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LETTER TO THE EDITOR
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Received 14 August 2000

Abstract. A modified mean-field theory is framed to adjoin two successful mean-field theories:
cluster approximation and paradisical mean-field theory. The results do not give an improvement
in describing the fundamental diagram. We point out that the success of paradisical mean-field
theory is accidental and cannot be improved systematically as the cluster approximation can.

1. Introduction

The cellular automaton description of traffic flow has attracted much attention recently [1].
Instead of differential equations, the underlying dynamics is governed by a few update rules [2].
They are suitable for large-scale computer calculations and have been used for real-time
simulations of urban traffic in various cities [3]. Numerical works in various applications
have been reported [4]. In contrast, we know very little about the analytical properties. The
difficulty of analytical descriptions is partly owing to the lack of a Hamiltonian; thus standard
methods in statistical mechanics are not applicable. Complementary to numerical works,
analytical descriptions can provide better insights into the models and help greatly to reduce
the need for computer resources.

Various analytical approaches have been developed to describe the fundamental diagram,
i.e. the relation between flow and density in the stationary states. The mean-field theory
based on a microscopic description is the simplest one. As correlations between cells are
completely neglected, the flow is underestimated considerably. More recently, different
methods of improvement have been proposed. Especially, both the cluster approximation
and the paradisical mean-field theory are able to obtain the exact results in the limiting case of
vmax = 1.

In the cluster approximation, the short-range correlations between the cells are
systematically taken into account [5, 6]. A cluster of n neighbouring cells is treated exactly
in the n-cluster approximation. The cluster is then coupled to the rest of the system self-
consistently by overlapping (n − 1) cells with another cluster. In the limiting case of n = 1,
this approach reduces to the simple mean-field theory. The exact results of vmax = 1 can be
reproduced in the two-cluster approximation.

The paradisical mean-field theory is a simple mean-field theory applied in a reduced
configuration space. In the parallel update, not all states of the configuration space can be
reached by the dynamics. These dynamically forbidden states are called Garden of Eden
(GoE) states or paradisical states [7], which are eliminated deliberately from the paradisical
mean-field theory. The exact result of vmax = 1 can be readily reproduced.

However, neither the two-cluster approximation nor paradisical mean-field theory is able
to obtain exact results in the case of vmax = 2, though considerable improvement over the
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simple mean-field results has been achieved in both approaches. Inclusion of the short-range
correlations and elimination of the dynamically forbidden states are both important. However,
these two issues have been considered separately in previous works. In this Letter, we combine
these two approaches in the hope of obtaining a better description.

2. Traffic model

In the basic model [2], a single-lane highway is divided into L cells. Each cell can be either
empty or occupied by a car with an integer speed v ∈ {0, 1, . . . , vmax}, where vmax is the speed
limit. With periodic boundary condition, the number of cars is conserved. At each time step,
the configuration of N cars is updated by the following four rules, which are applied in parallel
to all cars. The first rule (R1) is the acceleration. If the speed of a car is lower than vmax,
the speed is advanced by one. The second rule (R2) is the slowing down due to other cars.
If a car has d empty cells in front of it and a speed larger than d, the speed is reduced to d.
The third rule (R3) is the randomization, which introduces a noise to simulate the stochastic
driving behaviour. The speed of a moving car (v � 1) is decreased by one with a braking
probability p. In the fourth rule (R4), the position of a car is shifted by its speed v. Iterations
over these simple rules already give realistic results. The model contains three parameters:
the maximum speed vmax, the braking probability p and the average density ρ = N/L.

3. Modified mean-field theory

In this section, we present a self-consistent approach to combine the n-cluster approximation
with the paradisical mean-field theory. The GoE states in the two-cluster approximation are
eliminated and a new normalization constant is introduced. We briefly review the results for
vmax = 2 in the two-cluster approximation. In order to simplify the description, a slightly
different update ordering (R2–R3–R4–R1) is suggested, i.e. one looks at the system after the
acceleration rule. Then there are no cars with v = 0 and effectively the number of variables is
reduced. In the two-cluster approximation, the nearest-neighbour correlations are considered.
There are nine variables in describing the configurations of two nearest-neighbouring cells:
Pij with i, j ∈ {x, 1, 2}, where x denotes an empty cell and the numbers correspond to the
speeds of the cars. We note that the benefit of ordering (R2–R3–R4–R1) is in dealing with
a smaller number of variables, while the GoE states can be easily analysed in the ordering
(R1–R2–R3–R4). To distinguish between these two orderings in the following text, we use
〈〈· · ·〉〉 to denote the configurations in the ordering (R2–R3–R4–R1) and 〈· · ·〉 in the ordering
(R1–R2–R3–R4). It is interesting to note that the parallel update implies that two of the nine
variables vanish, i.e. P12 = P22 = 0. The configurations 〈〈12〉〉 correspond to 〈01〉 and 〈02〉.
Similarly, the configurations 〈〈22〉〉 correspond to 〈11〉, 〈12〉, 〈21〉 and 〈22〉. These are GoE
states, since the moving car must leave an empty cell behind. As the nearest-neighbouring cells
are treated exactly in the two-cluster approximation, these nearest-neighbouring GoE states
are excluded automatically. The normalization of probabilities gives

Pxx + Px1 + Px2 + P1x + P11 + P2x + P21 = 1. (1)

The conservation of the number of cars gives

Px1 + Px2 + P1x + 2P11 + P2x + 2P21 = 2ρ. (2)

The equilibrium probabilities are determined by the dynamics of the update rules. The
equations for the equilibrium probabilities can be obtained by the combination of conditional
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probabilities. For example, the equation for P1x reads

P1x = pP1x + P2x

[
pPx1 + pPx2

Pxx + Px1 + Px2

]
+ P11

[
(1 − p)P1x

P1x + P11

]
+ P21

[
(1 − p)P1x

P1x + P11

]
. (3)

The first term in the right-hand side describes the probability for the configuration 〈〈1x〉〉 to
remain unchanged in the next time step. The other three terms correspond to the probabilities
for the configurations 〈〈2x〉〉, 〈〈11〉〉 and 〈〈21〉〉, respectively, to change into 〈〈1x〉〉 in the next
time step. As prescribed in the update rules, the configuration 〈〈1x〉〉 can only arise from these
four configurations. Similarly, there are six more equations for the equilibrium values of the
other six variables: Pxx , Px1, Px2, P11, P2x and P21, which are not shown. These equations
are not linearly independent of each other. However, together with equations (1) and (2), they
provide a unique solution for Pij . The flow can be written as

J = (1 − p)P1x + P2x

[
(2 − p)Pxx + (1 − p)Px1 + (1 − p)Px2

Pxx + Px1 + Px2

]
. (4)

In the two-cluster approximation, the GoE states beyond the nearest-neighbouring cells
are still included. For example, configurations 〈1x2〉 and 〈2x2〉 are also GoE states, which
become parts of the configurations 〈〈2x2〉〉. These states are assigned with a probability

P2x

[
Px2

Pxx + Px1 + Px2

]
(5)

and appear in the second term of equation (3). However, we cannot just eliminate this term as
done in the paradisical mean-field theory, for the states 〈〈2x2〉〉 also include the states 〈1x1〉 and
〈2x1〉, which are not GoE states. Thus the states 〈〈2x2〉〉 can only be partly eliminated. Only
those configurations where the leading car has a speed of 2 before applying the acceleration
rule are the GoE states. Thus we have to distinguish between v = 1 and v = 2, which are
mixed up after applying the acceleration rule. We introduce a new parameter W to describe
the weighting of GoE states in the configuration 〈〈2x2〉〉. Then the equation for P1x should be
replaced by

P1x = N
{
pP1x + P2x

[
pPx1 + pPx2(1 − W)

Pxx + Px1 + Px2

]
+ P11

[
(1 − p)P1x

P1x + P11

]
+ P21

[
(1 − p)P1x

P1x + P11

]}
.

(6)

As the configuration space is reduced, a new normalization N is necessary. The weighting W
can be explicitly expressed as

W = N
[

P2x

P2x + P21

] [
Pxx

Pxx + Px1 + Px2

]
(1 − p) (7)

where the case of v = 2 before applying the acceleration rule can be related to a configuration
〈〈2xx〉〉. The normalization constant N is inserted for self-consistency. The same factor
can also be used to eliminate the GoE states in the configurations 〈〈1x2〉〉 and 〈〈1xx2〉〉, in
which 〈0x2〉 and 〈0xx2〉 are GoE states, while 〈0x1〉 and 〈0xx1〉 are not. To be consistent in
considering three neighbouring cells in the above equation, a further modification is needed:

P1x = N
{
pP1x

[
Pxx + Px1 + Px2(1 − W)

Pxx + Px1 + Px2

]
+ P2x

[
pPx1 + pPx2(1 − W)

Pxx + Px1 + Px2

]

+P11

[
(1 − p)P1x

P1x + P11

]
+ P21

[
(1 − p)P1x

P1x + P11

]}
(8)

where the GoE states implicitly included in the first term of the right-hand side are eliminated.
Similarly, for variables Pxx , Px1, Px2, P11, P2x and P21, the corresponding equations should
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Figure 1. Fundamental diagram, flow J versus density ρ, for vmax = 2 and p = 0.5. The solid
line is the result of combing the cluster approximation with the paradisical mean-field theory. The
dash–dotted, dashed and dotted curves are the results for the simple mean-field theory, cluster
approximation and paradisical mean-field theory, respectively.

also be replaced (see the appendix). It is interesting to note that without the normalization, i.e.
N = 1, no solution of Pij can be found. With the normalization N as a new variable, a unique
solution can be determined for Pij and N . Numerically, an iteration scheme is employed with
the initial values taken from Pij of the two-cluster approximation and N = 1. Then the flow
becomes

J = (1 − p)P1x

[
Pxx + Px1 + Px2(1 − W)

Pxx + Px1 + Px2

]

+P2x

[
(2 − p)Pxx + (1 − p)Px1 + (1 − p)Px2(1 − W)

Pxx + Px1 + Px2

]
. (9)

The results are shown in figure 1. At first sight, this result is surprising. The flow is
underestimated compared with the result of the two-cluster approximation. In this calculation,
we eliminate all the GoE states: 〈〈1x2〉〉, 〈〈2x2〉〉 and 〈〈1xx2〉〉. There are no further elementary
GoE states for clusters up to ten cells [8]. We have studied the effect of eliminating these GoE
states separately. The results are similar. The flow is in between the results for the two-cluster
approximation and simple mean-field theory (one-cluster approximation).
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4. Discussion

In this Letter, a modified mean-field theory is framed to adjoin two successful mean-field
theories: the cluster approximation and paradisical mean-field theory. However, the results
do not make an improvement in describing the fundamental diagram. Various types of mean-
field theory are all based on microscopic considerations and probability interpretation. In the
cluster approximation, conditional probabilities are applied systematically. An improved result
is obtained with a larger size of cluster considered, though the calculations are quite involved
and the nonlinear system of equations can only be solved numerically even for relatively small
cluster size.

In contrast, the probability interpretation has not been treated rigorously in the paradisical
mean-field theory. The terms corresponding to the GoE states are deleted quite arbitrarily
and then a new factor is introduced to renormalize the probability. Starting with the simple
mean-field theory, i.e. in the one-cluster approximation, such a scheme leads to a considerable
increase of the flow. Basically, the success of the paradisical mean-field theory lies in the
elimination of nearest-neighbouring GoE states. These states have more weighting on the
lower speed. Thus a renormalization will shift weighting toward a higher speed and the
flow will increase considerably. Further eliminating the GoE states involving three or four
neighbouring cells has only negligible effects. In contrast, when we start with the two-cluster
approximation, the effects of nearest-neighbouring GoE states have already been included. We
only have to consider the GoE states beyond the nearest-neighbouring cells. The GoE states of
nearest-neighbouring cells involve a moving car, while those beyond the nearest-neighbouring
cells involve a car moving at its highest speed. As these states have more weighting on the
higher speed, the elimination and renormalization will shift weighting back to a lower speed
and the flow will decrease, as shown in figure 1. It is interesting to note that eliminating
the nearest-neighbouring GoE states will increase the flow more effectively in the paradisical
mean-field theory than in the two-cluster approximation, while the probability interpretation
is taken more rigorously in the two-cluster approximation. Thus we simply conclude that the
success of paradisical mean-field theory is accidental. Such an approach cannot be improved
systematically as the cluster approximation can.

Appendix

To be complete, we list the six equations for variables Pxx , Px1, Px2, P11, P2x and P21,
respectively:

Pxx = N
{
Pxx

[
pP1x + Pxx(

Pxx+P1x+pP2x

Pxx+P1x+P2x
)

Pxx + P1x + P2x

]
+ P2x

[
qPxx

Pxx + Px1 + Px2

]

+Px2

[
P2x(

Pxx+qPx1+qPx2V
Pxx+Px1+Px2

)

P2x + P21

][
pP1xV + pP2xV + Pxx(

Pxx+P1xV+pP2x

Pxx+P1x+P2x
)

Pxx + P1x + P2x

]

+Px1

[
qP1x

P1x + P11

][
pP1x + pP2x + Pxx(

Pxx+P1x+pP2x

Pxx+P1x+P2x
)

Pxx + P1x + P2x

]}
(10)

Px1 = N
{
Px2

[
P21 + P2x(

pPx1+pPx2V
Pxx+Px1+Px2

)

P2x + P21

][
pP1xV + pP2xV + Pxx(

Pxx+P1xV+pP2x

Pxx+P1x+P2x
)

Pxx + P1x + P2x

]

+Px1

[
pP1x + P11

P1x + P11

][
pP1x + pP2x + Pxx(

Pxx+P1x+pP2x

Pxx+P1x+P2x
)

Pxx + P1x + P2x

]}
(11)



L476 Letter to the Editor

Px2 = N
{
Pxx

[
qP2x

Pxx + P1x + P2x

]
+ qP1x

[
Pxx + Px1 + Px2V
Pxx + Px1 + Px2

]

+P2x

[
pPxx + qPx1 + qPx2V

Pxx + Px1 + Px2

]}
(12)

P11 = N
{
P11

[
pP1x + P11

P1x + P11

]
+ P21

[
pP1x + P11

P1x + P11

]}
(13)

P2x = N
{
Pxx

[
qP1x + pP2x + Pxx(

qP2x

Pxx+P1x+P2x
)

Pxx + P1x + P2x

]

+Px2

[
P2x(

Pxx+qPx1+qPx2V
Pxx+Px1+Px2

)

P2x + P21

][
qP1xV + qP2xV + Pxx(

qP2x

Pxx+P1x+P2x
)

Pxx + P1x + P2x

]

+Px1

[
qP1x

P1x + P11

][
qP1x + qP2x + Pxx(

qP2x

Pxx+P1x+P2x
)

Pxx + P1x + P2x

]}
(14)

P21 = N
{
Px2

[
P21 + P2x(

pPx1+pPx2V
Pxx+Px1+Px2

)

P2x + P21

][
qP1xV + qP2xV + Pxx(

qP2x

Pxx+P1x+P2x
)

Pxx + P1x + P2x

]

+Px1

[
pP1x + P11

P1x + P11

][
qP1x + qP2x + Pxx(

qP2x

Pxx+P1x+P2x
)

Pxx + P1x + P2x

]}
(15)

(16)

where q = 1 − p and V = 1 − W .
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